Inverse relation for the two-dimensional Ising model with multispin interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 213035
(http://iopscience.iop.org/0305-4470/21/13/026)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 16:36

Please note that terms and conditions apply.

COMMENT

Inverse relation for the two-dimensional Ising model with multispin interactions

Loïc Turban
Laboratoire de Physique du Solide \dagger, BP no 239, F-54506 Vandoeuvre les Nancy Cedex, France

Received 17 March 1988

Abstract

We show that the partition function per site $\mathscr{K}_{m}\left(K_{r}, K_{\tau}\right)$ of the square lattice Ising model with m-spin interaction K_{x} and two-spin interaction K_{τ} satisfies the inverse relation $\mathscr{K}_{m}\left(K_{x}, K_{\tau}\right) \mathscr{K}_{m}\left(-K_{\vee}, K_{\tau} \pm \mathrm{i} \pi / 2\right)= \pm 2 \mathrm{i} \sinh 2 K_{\tau}$ for all m values.

The two-dimensional Ising model with m-spin interactions (Turban 1982a, b, Penson et al 1982) with Hamiltonian

$$
\begin{equation*}
-\beta \mathscr{H}_{m}=K_{x} \sum_{i, j} \prod_{k=0}^{m-1} \sigma_{i-k, j}+K_{\tau} \sum_{i, j} \sigma_{i, j} \sigma_{i, j+1} \tag{1}
\end{equation*}
$$

where $K_{x}\left(K_{\tau}\right)$ gives the interaction in the spatial (temporal) direction on the square lattice, has been extensively studied in the past few years in its 2D classical or 1D quantum mechanical version. The model is known to be self-dual:

$$
\begin{equation*}
\mathscr{K}_{m}\left(K_{x}, K_{\tau}\right)=\left(\sinh 2 K_{x} \sinh 2 K_{\tau}\right)^{1 / 2} \mathscr{K}_{m}\left(\tilde{K}_{x}, \tilde{K}_{\tau}\right) \tag{2}
\end{equation*}
$$

where \mathscr{K}_{m} is the partition function per site and the dual interactions \tilde{K}_{x} and \tilde{K}_{τ} are the usual ones:

$$
\begin{equation*}
\sinh 2 K_{x(\tau)} \sinh 2 \tilde{K}_{\tau(x)}=1 . \tag{3}
\end{equation*}
$$

It follows that the critical line is given by

$$
\begin{equation*}
\sinh 2 K_{x c} \sinh 2 K_{r c}=1 \tag{4}
\end{equation*}
$$

for all m. Symmetry and ground state degeneracy considerations led us to conjecture that the transition is of first order when $m>3$ and belongs to the Potts $q=4$ universality class when $m=3$. This is supported by finite-size scaling studies (Penson et al 1982, Debierre and Turban 1983, Vanderzande and Iglói 1987), weak and strong coupling expansions (Iglói et al 1986), conformal invariance (Kolb and Penson 1986, Alcaraz and Barber 1987, Iglói 1987, Penson et al 1988), Monte Carlo simulations (Blöte et al 1986, Alcaraz 1987) and mapping of the $m=3$ model in the extreme anisotropic limit on the $q=4$ Potts model (Blöte 1987).

In this comment we show that besides the duality relation the m-spin Ising model partition function also satisfies an inverse relation (Baxter 1980, Jaekel and Maillard 1981, Maillard 1983) in the temporal direction. Let us introduce an interaction-round-aface (IRF) model built on two replicas of the m-spin Ising model with a relative shift in the diagonal direction as shown in figure 1 . On the replicas the μ variables correspond to $m-1$ successive Ising spins σ grouped together along the spatial direction. To each face of the IRF model we associate the statistical weight

$$
\begin{align*}
& W\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right)=\prod_{k=0}^{m-2} a^{\prod_{1=0}^{m-1} \sigma_{1,1+k+1, l_{1}}} \prod_{k=0}^{m-2} b^{\sigma_{2,+1, l_{2} \sigma_{12}+k, l_{2}+1}} \tag{5a}\\
& \mu=\left\{\sigma_{i, j} ; \sigma_{i+1, j} ; \ldots ; \sigma_{l+m-2, j}\right\} \tag{5b}\\
& a=\mathrm{e}^{K} \quad b=\mathrm{e}^{K} . \tag{5c}
\end{align*}
$$

where the $\{\mu\}$ are coupled in pairs through $m-1$ interactions in both directions. Consider now two adjacent IRF models with $N / 2$ sites, statistical weights W and \bar{W}, with an interface in the spatial direction (figure 2). The new interactions \bar{K}_{x} and \bar{K}_{τ} are such that the inverse relation

$$
\begin{equation*}
\sum_{\mu_{2}^{\prime}} W\left(\mu_{1}, \mu_{2}^{\prime}, \mu_{3}, \mu_{4}\right) \bar{W}\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{2}^{\prime}\right)=\Lambda \delta\left(\mu_{2}, \mu_{4}\right) \tag{6}
\end{equation*}
$$

is satisfied for all the external spin configurations $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$. With $\bar{K}_{x}=-K_{x}$, one gets $a \bar{a}=1$ so that μ_{1} and μ_{3} are eliminated. Then equation (6) is obtained if \bar{K}_{τ} is chosen to satisfy

$$
\begin{equation*}
\sum_{\sigma_{2}^{\prime}} \bar{b}^{\sigma_{2} \sigma_{2}^{\prime}} b^{\sigma_{2}^{\prime} \sigma_{4}}=\lambda \delta\left(\sigma_{2}, \sigma_{4}\right) \tag{7}
\end{equation*}
$$

with $\Lambda=\lambda^{m-1}$ since equation (6) contains $m-1$ factors of this type, one for each of the $m-1$ spins in the μ variables. Summing over σ_{2}^{\prime} leads to

$$
\begin{equation*}
\bar{b}^{\sigma_{2}} b^{\sigma_{4}}+\bar{b}^{-\sigma_{2}} b^{-\sigma_{4}}=\lambda \delta\left(\sigma_{2}, \sigma_{4}\right) \tag{8}
\end{equation*}
$$

Figure 1. An IRF model (heavy lines) is constructed on two replicas of the m-spin Ising model (here with $m=3$). The variables of the $1 R F$ model are groups of $m-1$ successive Ising spins σ in the spatial direction. They are coupled by $m-1$ interactions K_{x} and K_{τ}.

Figure 2. Two adjacent IRF models with statistical weights W and \bar{W}, the interface lying in the spatial direction. Through a repeated summation over the central states such as μ_{2}^{\prime} on the interface, the product of the partition functions of the IRF models is obtained.
and

$$
\begin{array}{ll}
b \bar{b}+(b \bar{b})^{-1}=\lambda & \left(\sigma_{2}=\sigma_{4}\right) \\
b / \bar{b}+\bar{b} / b=0 & \left(\sigma_{2}=-\sigma_{4}\right) \tag{9b}
\end{array}
$$

so that

$$
\begin{align*}
& \lambda= \pm i\left(b^{2}-b^{-2}\right)= \pm 2 \mathrm{i} \sinh 2 K_{\top} \tag{10a}\\
& \bar{b}= \pm i b \quad \bar{K}_{\tau}=K_{\tau} \pm \mathrm{i} \pi / 2 . \tag{10b}
\end{align*}
$$

A repeated summation over the central states at the interface gives the product of the partition functions in the thermodynamic limit

$$
\begin{equation*}
\mathscr{K}_{m}(a, b)^{N(m-1) / 2} \mathscr{K}_{m}\left(a^{-1}, \pm i b\right)^{N(m-1) / 2}=\Lambda^{N / 2}=\lambda^{N(m-1) / 2} \tag{11}
\end{equation*}
$$

since there are $N(m-1) / 2$ spins on each side and a factor Λ eliminates $2(m-1)$ spins. It follows that the partition function per site satisfies the inverse relation

$$
\begin{equation*}
\mathscr{K}_{m}\left(K_{x}, K_{\tau}\right) \mathscr{K}_{m}\left(-K_{x}, K_{\tau} \pm \mathrm{i} \pi / 2\right)= \pm 2 \mathrm{i} \sinh 2 K_{\tau} \tag{12}
\end{equation*}
$$

for all m.
The self-duality relation and the inverse relation keep the same form as for the square lattice Ising model $(m=2)$ but in order to progress towards a solution of the m-spin model, m-dependent relations are needed. The model is anisotropic and one should look for an inverse relation working with the interface in the temporal direction. We hope that this comment will stimulate further work in this direction.

References

Baxter R J 1980 Fundamental Problems in Statistical Mechanics V ed E G D Cohen (Amsterdam: North Holland) p 109
Blöte H W J 1987 J. Phys. A: Math. Gen. 20 L35
Blöte H W J, Compagner A, Cornelissen P A M, Hoogland A, Mallezie F and Vanderzande C 1986 Physica 139A 395
Debierre J M and Turban L 1983 J. Phys. A: Math. Gen. 163571
Iglói F 1987 J. Phys. A: Math. Gen. 205319
Iglói F, Kapor D V, Ŝkrinjar M and Sólyom J 1986 J. Phys. A: Math. Gen. 191189
Jaekel M T and Maillard J M 1981 Modèles Solubles en Mécanique Statistique. Note CEA-N-2255 (Saclay)
Kolb M and Penson K A 1986 J. Phys. A: Math. Gen. 19 L779
Maillard J M 1983 Relation d'Inverse en Mécanique Statistique. Note CEA-N- 2327 (Saclay)
Penson K A, Debierre J M and Turban L 1988 Phys. Rev. B 37 to appear
Penson K A, Juilien R and Pfeuty P 1982 Phys. Rev. B 266334
Turban L 1982a J. Phys C: Solid State Phys 15 L65

- 1982b J. Physique Lett. 43 L259

Vanderzande C and Iglói F 1987 J. Phys. A: Math. Gen. 204539

